Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Electrical Spin Injection and Detection in Mn5Ge3/Ge/Mn5Ge3 Nanowire Transistors

Identifieur interne : 000270 ( Chine/Analysis ); précédent : 000269; suivant : 000271

Electrical Spin Injection and Detection in Mn5Ge3/Ge/Mn5Ge3 Nanowire Transistors

Auteurs : RBID : Pascal:13-0330667

Descripteurs français

English descriptors

Abstract

In this Letter, we report the electrical spin injection and detection in Ge nanowire transistors with single-crystalline ferromagnetic Mn5Ge3 as source/drain contacts formed by thermal reactions. Degenerate indium dopants were successfully incorporated into as-grown Ge nanowires as p-type doping to alleviate the conductivity mismatch between Ge and Mn5Ge3. The magnetoresistance (MR) of the Mn5Ge3/ Ge/Mn5Ge3 nanowire transistor was found to be largely affected by the applied bias. Specifically, negative and hysteretic MR curves were observed under a large current bias in the temperature range from T = 2 K up to T = 50 K, which clearly indicated the electrical spin injection from ferromagnetic Mn5Ge3 contacts into Ge nanowires. In addition to the bias effect, the MR amplitude was found to exponentially decay with the Ge nanowire channel length; this fact was explained by the dominated Elliot-Yafet spin-relaxation mechanism. The fitting of MR further revealed a spin diffusion length of lsf = 480 ± 13 nm and a spin lifetime exceeding 244 ps at T = 10 K in p-type Ge nanowires, and they showed a weak temperature dependence between 2 and 50 K. Ge nanowires showed a significant enhancement in the measured spin diffusion length and spin lifetime compared with those reported for bulk p-type Ge. Our study of the spin transport in the Mn5Ge3/Ge/Mn5Ge3 nanowire transistor points to a possible realization of spin-based transistors; it may also open up new opportunities to create novel Ge nanowire-based spintronic devices. Furthermore, the simple fabrication process promises a compatible integration into standard Si technology in the future.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0330667

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Electrical Spin Injection and Detection in Mn
<sub>5</sub>
Ge
<sub>3</sub>
/Ge/Mn
<sub>5</sub>
Ge
<sub>3</sub>
Nanowire Transistors</title>
<author>
<name>JIANSHI TANG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Device Research Laboratory, Department of Electrical Engineering, University of California</s1>
<s2>Los Angeles, California, 90095</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>12 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Los Angeles, California, 90095</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wang, Chiu Yen" uniqKey="Wang C">Chiu-Yen Wang</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Device Research Laboratory, Department of Electrical Engineering, University of California</s1>
<s2>Los Angeles, California, 90095</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>12 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Los Angeles, California, 90095</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu</s1>
<s2>Taiwan, 30013</s2>
<s3>TWN</s3>
<sZ>2 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
<country>Taïwan</country>
<wicri:noRegion>Taiwan, 30013</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei</s1>
<s2>Taiwan, 10607</s2>
<s3>CHN</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Taiwan, 10607</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chang, Li Te" uniqKey="Chang L">Li-Te Chang</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Device Research Laboratory, Department of Electrical Engineering, University of California</s1>
<s2>Los Angeles, California, 90095</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>12 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Los Angeles, California, 90095</wicri:noRegion>
</affiliation>
</author>
<author>
<name>YABIN FAN</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Device Research Laboratory, Department of Electrical Engineering, University of California</s1>
<s2>Los Angeles, California, 90095</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>12 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Los Angeles, California, 90095</wicri:noRegion>
</affiliation>
</author>
<author>
<name>TIANXIAO NIE</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Device Research Laboratory, Department of Electrical Engineering, University of California</s1>
<s2>Los Angeles, California, 90095</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>12 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Los Angeles, California, 90095</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chan, Michael" uniqKey="Chan M">Michael Chan</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Device Research Laboratory, Department of Electrical Engineering, University of California</s1>
<s2>Los Angeles, California, 90095</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>12 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Los Angeles, California, 90095</wicri:noRegion>
</affiliation>
</author>
<author>
<name>WANJUN JIANG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Device Research Laboratory, Department of Electrical Engineering, University of California</s1>
<s2>Los Angeles, California, 90095</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>12 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Los Angeles, California, 90095</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chen, Yu Ting" uniqKey="Chen Y">Yu-Ting Chen</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu</s1>
<s2>Taiwan, 30013</s2>
<s3>TWN</s3>
<sZ>2 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
<country>Taïwan</country>
<wicri:noRegion>Taiwan, 30013</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yang, Hong Jie" uniqKey="Yang H">Hong-Jie Yang</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Department of Chemical Engineering, National Tsing Hua University, Hsinchu</s1>
<s2>Taiwan, 30013</s2>
<s3>CHN</s3>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Taiwan, 30013</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tuan, Hsing Yu" uniqKey="Tuan H">Hsing-Yu Tuan</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Department of Chemical Engineering, National Tsing Hua University, Hsinchu</s1>
<s2>Taiwan, 30013</s2>
<s3>CHN</s3>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Taiwan, 30013</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chen, Lih Juann" uniqKey="Chen L">Lih-Juann Chen</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu</s1>
<s2>Taiwan, 30013</s2>
<s3>TWN</s3>
<sZ>2 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
<country>Taïwan</country>
<wicri:noRegion>Taiwan, 30013</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wang, Kang L" uniqKey="Wang K">Kang L. Wang</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Device Research Laboratory, Department of Electrical Engineering, University of California</s1>
<s2>Los Angeles, California, 90095</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>12 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Los Angeles, California, 90095</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0330667</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0330667 INIST</idno>
<idno type="RBID">Pascal:13-0330667</idno>
<idno type="wicri:Area/Main/Corpus">000632</idno>
<idno type="wicri:Area/Main/Repository">000E03</idno>
<idno type="wicri:Area/Chine/Extraction">000270</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1530-6984</idno>
<title level="j" type="abbreviated">Nano lett. : (Print)</title>
<title level="j" type="main">Nano letters : (Print)</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Arsenic addition</term>
<term>Diffusion length</term>
<term>Electrical conductivity</term>
<term>Ferromagnetic materials</term>
<term>Indium</term>
<term>Lifetime</term>
<term>Magnetoresistance</term>
<term>Nanoelectronics</term>
<term>Nanomaterial synthesis</term>
<term>Nanostructured materials</term>
<term>Nanowire device</term>
<term>Nanowires</term>
<term>Single crystal</term>
<term>Spin injection</term>
<term>Spin relaxation</term>
<term>Spintronics</term>
<term>Temperature dependence</term>
<term>Transistor</term>
<term>p type semiconductor</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Injection spin</term>
<term>Nanoélectronique</term>
<term>Ferromagnétique</term>
<term>Indium</term>
<term>Synthèse nanomatériau</term>
<term>Addition arsenic</term>
<term>Semiconducteur type p</term>
<term>Conductivité électrique</term>
<term>Magnétorésistance</term>
<term>Dépendance température</term>
<term>Nanofil</term>
<term>Nanomatériau</term>
<term>Relaxation spin</term>
<term>Longueur diffusion</term>
<term>Monocristal</term>
<term>Durée vie</term>
<term>Transistor</term>
<term>Dispositif nanofil</term>
<term>Electronique spin</term>
<term>8535</term>
<term>7550T</term>
<term>8116</term>
<term>7363</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In this Letter, we report the electrical spin injection and detection in Ge nanowire transistors with single-crystalline ferromagnetic Mn
<sub>5</sub>
Ge
<sub>3</sub>
as source/drain contacts formed by thermal reactions. Degenerate indium dopants were successfully incorporated into as-grown Ge nanowires as p-type doping to alleviate the conductivity mismatch between Ge and Mn
<sub>5</sub>
Ge
<sub>3</sub>
. The magnetoresistance (MR) of the Mn
<sub>5</sub>
Ge
<sub>3</sub>
/ Ge/Mn
<sub>5</sub>
Ge
<sub>3</sub>
nanowire transistor was found to be largely affected by the applied bias. Specifically, negative and hysteretic MR curves were observed under a large current bias in the temperature range from T = 2 K up to T = 50 K, which clearly indicated the electrical spin injection from ferromagnetic Mn
<sub>5</sub>
Ge
<sub>3</sub>
contacts into Ge nanowires. In addition to the bias effect, the MR amplitude was found to exponentially decay with the Ge nanowire channel length; this fact was explained by the dominated Elliot-Yafet spin-relaxation mechanism. The fitting of MR further revealed a spin diffusion length of l
<sub>sf</sub>
= 480 ± 13 nm and a spin lifetime exceeding 244 ps at T = 10 K in p-type Ge nanowires, and they showed a weak temperature dependence between 2 and 50 K. Ge nanowires showed a significant enhancement in the measured spin diffusion length and spin lifetime compared with those reported for bulk p-type Ge. Our study of the spin transport in the Mn
<sub>5</sub>
Ge
<sub>3</sub>
/Ge/Mn
<sub>5</sub>
Ge
<sub>3</sub>
nanowire transistor points to a possible realization of spin-based transistors; it may also open up new opportunities to create novel Ge nanowire-based spintronic devices. Furthermore, the simple fabrication process promises a compatible integration into standard Si technology in the future.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1530-6984</s0>
</fA01>
<fA03 i2="1">
<s0>Nano lett. : (Print)</s0>
</fA03>
<fA05>
<s2>13</s2>
</fA05>
<fA06>
<s2>9</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Electrical Spin Injection and Detection in Mn
<sub>5</sub>
Ge
<sub>3</sub>
/Ge/Mn
<sub>5</sub>
Ge
<sub>3</sub>
Nanowire Transistors</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>JIANSHI TANG</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>WANG (Chiu-Yen)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>CHANG (Li-Te)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>YABIN FAN</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>TIANXIAO NIE</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>CHAN (Michael)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>WANJUN JIANG</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>CHEN (Yu-Ting)</s1>
</fA11>
<fA11 i1="09" i2="1">
<s1>YANG (Hong-Jie)</s1>
</fA11>
<fA11 i1="10" i2="1">
<s1>TUAN (Hsing-Yu)</s1>
</fA11>
<fA11 i1="11" i2="1">
<s1>CHEN (Lih-Juann)</s1>
</fA11>
<fA11 i1="12" i2="1">
<s1>WANG (Kang L.)</s1>
</fA11>
<fA14 i1="01">
<s1>Device Research Laboratory, Department of Electrical Engineering, University of California</s1>
<s2>Los Angeles, California, 90095</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>12 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu</s1>
<s2>Taiwan, 30013</s2>
<s3>TWN</s3>
<sZ>2 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>11 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Department of Chemical Engineering, National Tsing Hua University, Hsinchu</s1>
<s2>Taiwan, 30013</s2>
<s3>CHN</s3>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei</s1>
<s2>Taiwan, 10607</s2>
<s3>CHN</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA20>
<s1>4036-4043</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>27369</s2>
<s5>354000501564970120</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>52 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0330667</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Nano letters : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>In this Letter, we report the electrical spin injection and detection in Ge nanowire transistors with single-crystalline ferromagnetic Mn
<sub>5</sub>
Ge
<sub>3</sub>
as source/drain contacts formed by thermal reactions. Degenerate indium dopants were successfully incorporated into as-grown Ge nanowires as p-type doping to alleviate the conductivity mismatch between Ge and Mn
<sub>5</sub>
Ge
<sub>3</sub>
. The magnetoresistance (MR) of the Mn
<sub>5</sub>
Ge
<sub>3</sub>
/ Ge/Mn
<sub>5</sub>
Ge
<sub>3</sub>
nanowire transistor was found to be largely affected by the applied bias. Specifically, negative and hysteretic MR curves were observed under a large current bias in the temperature range from T = 2 K up to T = 50 K, which clearly indicated the electrical spin injection from ferromagnetic Mn
<sub>5</sub>
Ge
<sub>3</sub>
contacts into Ge nanowires. In addition to the bias effect, the MR amplitude was found to exponentially decay with the Ge nanowire channel length; this fact was explained by the dominated Elliot-Yafet spin-relaxation mechanism. The fitting of MR further revealed a spin diffusion length of l
<sub>sf</sub>
= 480 ± 13 nm and a spin lifetime exceeding 244 ps at T = 10 K in p-type Ge nanowires, and they showed a weak temperature dependence between 2 and 50 K. Ge nanowires showed a significant enhancement in the measured spin diffusion length and spin lifetime compared with those reported for bulk p-type Ge. Our study of the spin transport in the Mn
<sub>5</sub>
Ge
<sub>3</sub>
/Ge/Mn
<sub>5</sub>
Ge
<sub>3</sub>
nanowire transistor points to a possible realization of spin-based transistors; it may also open up new opportunities to create novel Ge nanowire-based spintronic devices. Furthermore, the simple fabrication process promises a compatible integration into standard Si technology in the future.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D03F18</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B70E50T</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B80A16</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B70C63</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Injection spin</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Spin injection</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Nanoélectronique</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Nanoelectronics</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Nanoelectrónica</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Ferromagnétique</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Ferromagnetic materials</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Material ferromagnético</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Indium</s0>
<s2>NC</s2>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Indium</s0>
<s2>NC</s2>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Indio</s0>
<s2>NC</s2>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Synthèse nanomatériau</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Nanomaterial synthesis</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Síntesis nanomaterial</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Addition arsenic</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Arsenic addition</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Adición arsénico</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Semiconducteur type p</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>p type semiconductor</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Semiconductor tipo p</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Conductivité électrique</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Electrical conductivity</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Conductividad eléctrica</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Magnétorésistance</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Magnetoresistance</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Magnetoresistencia</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Dépendance température</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Temperature dependence</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Nanofil</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Nanowires</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Nanomatériau</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Nanostructured materials</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Relaxation spin</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Spin relaxation</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Relajación spin</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Longueur diffusion</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Diffusion length</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Longitud difusión</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Monocristal</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Single crystal</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Monocristal</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Durée vie</s0>
<s5>29</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Lifetime</s0>
<s5>29</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Tiempo vida</s0>
<s5>29</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Transistor</s0>
<s5>30</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Transistor</s0>
<s5>30</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Transistor</s0>
<s5>30</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Dispositif nanofil</s0>
<s5>31</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Nanowire device</s0>
<s5>31</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Dispositivo nanohilo</s0>
<s5>31</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Electronique spin</s0>
<s5>32</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Spintronics</s0>
<s5>32</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Electrónica de espin</s0>
<s5>32</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>8535</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>7550T</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>8116</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fC03 i1="23" i2="X" l="FRE">
<s0>7363</s0>
<s4>INC</s4>
<s5>74</s5>
</fC03>
<fN21>
<s1>308</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Chine/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000270 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Chine/Analysis/biblio.hfd -nk 000270 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Chine
   |étape=   Analysis
   |type=    RBID
   |clé=     Pascal:13-0330667
   |texte=   Electrical Spin Injection and Detection in Mn5Ge3/Ge/Mn5Ge3 Nanowire Transistors
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024